Apply fundamental concepts in network analysis to large real-world datasets in 4 different case studies.
By pressing Continue you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.
Now that you're familiar with the basics of network analysis it's time to see how to apply those concepts to large real-world data sets. You'll work through three different case studies, each building on your previous work. These case studies are working with the kinds of data you'll see in both academic and industry settings. We'll explore some of the computational and visualization challenges you'll face and how to overcome them. Your knowledge of igraph will continue to grow, but we'll also leverage other visualization libraries that will help you bring your visualizations to the web.
In this chapter you'll explore a subset of an Amazon purchase graph. You'll build on what you've already learned, finding important products and discovering what drives purchases. You'll also examine how graphs can change through time by looking at the graph during different time periods.
In this chapter you will analyze data from a Chicago bike sharing network. We will build on the concepts already covered in the introductory course, and add a few new ones to handle graphs with weighted edges. You will also start with data in a slightly more raw form and cover how to build your graph up from a data source you might find.
In this lesson you'll explore some Twitter data about R by looking at conversations using '#rstats'. First you'll look at the raw data and think about how you want to build your graph. There's a number of ways to do this, and we'll cover two ways: retweets and mentions. You'll build those graphs and then compare them on a number of metrics.
So far everything we've done has been using plotting from igraph. It provides many powerful ways to plot your graph data. However many people prefer interacting with other plotting frameworks like ggplot2, or even interactive frameworks like d3.js. In this lesson you'll look at other plotting libraries that build on the ggplot2 framework. You'll also look at other non-"hairball" type methods like hive plots, as well as building interactive and animated plots.
In this chapter you'll explore a subset of an Amazon purchase graph. You'll build on what you've already learned, finding important products and discovering what drives purchases. You'll also examine how graphs can change through time by looking at the graph during different time periods.
In this lesson you'll explore some Twitter data about R by looking at conversations using '#rstats'. First you'll look at the raw data and think about how you want to build your graph. There's a number of ways to do this, and we'll cover two ways: retweets and mentions. You'll build those graphs and then compare them on a number of metrics.
In this chapter you will analyze data from a Chicago bike sharing network. We will build on the concepts already covered in the introductory course, and add a few new ones to handle graphs with weighted edges. You will also start with data in a slightly more raw form and cover how to build your graph up from a data source you might find.
So far everything we've done has been using plotting from igraph. It provides many powerful ways to plot your graph data. However many people prefer interacting with other plotting frameworks like ggplot2, or even interactive frameworks like d3.js. In this lesson you'll look at other plotting libraries that build on the ggplot2 framework. You'll also look at other non-"hairball" type methods like hive plots, as well as building interactive and animated plots.
“I've used other sites, but DataCamp's been the one that I've stuck with.”
Devon Edwards Joseph
Lloyd's Banking Group
“DataCamp is the top resource I recommend for learning data science.”
Louis Maiden
Harvard Business School
“DataCamp is by far my favorite website to learn from.”
Ronald Bowers
Decision Science Analytics @ USAA