Interactive Course

Preparing for Machine Learning Interview Questions in Python

Sharpen your knowledge in machine learning, and prepare for any potential question you might get in a machine learning interview in Python.

  • 4 hours
  • 16 Videos
  • 60 Exercises
  • 742 Participants
  • 4,600 XP

Loved by learners at thousands of top companies:

intel-grey.svg
rei-grey.svg
deloitte-grey.svg
forrester-grey.svg
uber-grey.svg
whole-foods-grey.svg

Course Description

Have you ever wondered how to properly prepare for a Machine Learning Interview? Of course you have or you likely wouldn't be reading this right now! In this course, students will prepare to answer 15 common Machine Learning (ML) interview questions for a data scientist role in Python. These questions will revolve around 7 important topics: data preprocessing, data visualization, supervised learning, unsupervised learning, model ensembling, model selection, and model evaluation. By the end of the course, the students will possess both the required theoretical background and the ability to develop Python code to successfully answer these 15 questions. The coding examples will be mainly based on the scikit-learn package given its ease-of-use and ability to cover the most important ML techniques in the Python language.

The course does not teach machine learning fundamentals as these are covered in the course's prerequisites.

  1. 1

    Data Pre-processing and Visualization

    Free

    In the first chapter of this course, you'll perform all the preprocessing steps required to create a predictive machine learning model, including what to do with missing values, outliers, and how to normalize your dataset.

  2. Unsupervised Learning

    In the third chapter of this course, you'll use unsupervised learning to apply feature extraction and visualization techniques for dimensionality reduction and clustering methods to select not only an appropriate clustering algorithm but optimal cluster number for a dataset.

  3. Supervised Learning

    In the second chapter of this course, you'll practice different several aspects of supervised machine learning techniques, such as selecting the optimal feature subset, regularization to avoid model overfitting, feature engineering, and ensemble models to address the so-called bias-variance trade-off.

  4. Model Selection and Evaluation

    In the fourth and final chapter of this course, you'll really step it up and apply bootstrapping and cross-validation to evaluate performance for model generalization, resampling techniques to imbalanced classes, detect and remove multicollinearity, and build an ensemble model.

  1. 1

    Data Pre-processing and Visualization

    Free

    In the first chapter of this course, you'll perform all the preprocessing steps required to create a predictive machine learning model, including what to do with missing values, outliers, and how to normalize your dataset.

  2. Supervised Learning

    In the second chapter of this course, you'll practice different several aspects of supervised machine learning techniques, such as selecting the optimal feature subset, regularization to avoid model overfitting, feature engineering, and ensemble models to address the so-called bias-variance trade-off.

  3. Unsupervised Learning

    In the third chapter of this course, you'll use unsupervised learning to apply feature extraction and visualization techniques for dimensionality reduction and clustering methods to select not only an appropriate clustering algorithm but optimal cluster number for a dataset.

  4. Model Selection and Evaluation

    In the fourth and final chapter of this course, you'll really step it up and apply bootstrapping and cross-validation to evaluate performance for model generalization, resampling techniques to imbalanced classes, detect and remove multicollinearity, and build an ensemble model.

What do other learners have to say?

Devon

“I've used other sites, but DataCamp's been the one that I've stuck with.”

Devon Edwards Joseph

Lloyd's Banking Group

Louis

“DataCamp is the top resource I recommend for learning data science.”

Louis Maiden

Harvard Business School

Ronbowers

“DataCamp is by far my favorite website to learn from.”

Ronald Bowers

Decision Science Analytics @ USAA

Lisa Stuart
Lisa Stuart

Data Scientist

Lisa Stuart is a Data Scientist with a wealth of industry experience. She is currently on the Process Innovation Team at Amazon where she and her team use statistical analysis and machine learning to improve processes around successful and on-time delivery for each and every Amazon order. Prior to that, she built predictive models for targeted marketing at Costco and Expedia and managed dashboards for process automation. At Starbucks, she managed a team of data scientists to build a predictive model on geopolitical stability of countries around the world to make informed decisions on expansion and supply routes. In her free time, you'll find her at the dog park hanging out with her beloved German Shepherd/Husky Blaze.

See More
Icon Icon Icon professional info