Skip to main content

Statistical Thinking in Python (Part 1)

Build the foundation you need to think statistically and to speak the language of your data.

Start Course for Free
3 Hours18 Videos61 Exercises166,215 Learners4550 XP

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.

Loved by learners at thousands of companies


Course Description

After all of the hard work of acquiring data and getting them into a form you can work with, you ultimately want to make clear, succinct conclusions from them. This crucial last step of a data analysis pipeline hinges on the principles of statistical inference. In this course, you will start building the foundation you need to think statistically, speak the language of your data, and understand what your data is telling you. The foundations of statistical thinking took decades to build, but can be grasped much faster today with the help of computers. With the power of Python-based tools, you will rapidly get up-to-speed and begin thinking statistically by the end of this course.
  1. 1

    Graphical Exploratory Data Analysis

    Free

    Before diving into sophisticated statistical inference techniques, you should first explore your data by plotting them and computing simple summary statistics. This process, called exploratory data analysis, is a crucial first step in statistical analysis of data.

    Play Chapter Now
    Introduction to Exploratory Data Analysis
    50 xp
    Tukey's comments on EDA
    50 xp
    Advantages of graphical EDA
    50 xp
    Plotting a histogram
    50 xp
    Plotting a histogram of iris data
    100 xp
    Axis labels!
    100 xp
    Adjusting the number of bins in a histogram
    100 xp
    Plot all of your data: Bee swarm plots
    50 xp
    Bee swarm plot
    100 xp
    Interpreting a bee swarm plot
    50 xp
    Plot all of your data: ECDFs
    50 xp
    Computing the ECDF
    100 xp
    Plotting the ECDF
    100 xp
    Comparison of ECDFs
    100 xp
    Onward toward the whole story!
    50 xp

Datasets

2008 election results (all states)2008 election results (swing states)Belmont StakesSpeed of light

Collaborators

hugobowneanderson
Hugo Bowne-Anderson
yashas
Yashas Roy
Justin Bois Headshot

Justin Bois

Lecturer at the California Institute of Technology

Justin Bois is a Teaching Professor in the Division of Biology and Biological Engineering at the California Institute of Technology. He teaches nine different classes there, nearly all of which heavily feature Python. He is dedicated to empowering students in the biological sciences with quantitative tools, particularly data analysis skills. Beyond biologists, he is thrilled to develop courses for DataCamp, whose students are an excited bunch of burgeoning data scientists!
See More

What do other learners have to say?

Join over 10 million learners and start Statistical Thinking in Python (Part 1) today!

Create Your Free Account

GoogleLinkedInFacebook

or

By continuing, you accept our Terms of Use, our Privacy Policy and that your data is stored in the USA.