Kurs
Anomalieerkennung mit Python
MittelSchwierigkeitsgrad
Aktualisierte 11.2025Kurs kostenlos starten
Im Lieferumfang enthalten beiPremium or Teams
PythonProbability & Statistics4 Std.16 Videos59 Übungen4,950 XP6,520Leistungsnachweis
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.Training für 2 oder mehr Personen?
Probiere es mit DataCamp for BusinessBeliebt bei Lernenden in Tausenden Unternehmen
Kursbeschreibung
Finde Fehler in deiner Datenanalyse
In fast jedem Datensatz gibt's Extremwerte oder Anomalien, und es ist wichtig, die zu erkennen und zu bearbeiten, bevor man mit der statistischen Untersuchung weitermacht. Wenn man Anomalien einfach ignoriert, können sie deine Analysen ganz leicht durcheinanderbringen und die Leistung von Machine-Learning-Modellen verzerren.
Lerne, Schätzfunktionen wie Isolation Forest und Local Outlier Factor zu nutzen
In diesem Kurs lernst du, Python zu nutzen, um verschiedene Methoden zur Erkennung von Anomalien umzusetzen. Du erkennst Extremwerte auf einen Blick und nutzt bewährte statistische Verfahren wie die mittlere absolute Abweichung für univariate Datensätze. Für multivariate Daten lernst du, Schätzer wie Isolation Forest, k-Nearest-Neighbors und Local Outlier Factor zu benutzen. Du lernst auch, wie du mehrere Ausreißerklassifikatoren zu einem risikoarmen endgültigen Schätzer zusammenfassen kannst. Du wirst mit einem wichtigen Data-Science-Tool ausgestattet sein: Anomalieerkennung mit Python.
Erweitere dein Python-Statistik-Toolkit
Bessere Erkennung von Anomalien heißt, dass du deine Daten besser verstehst und vor allem die Ursachen besser analysieren und über das Systemverhalten besser reden kannst. Wenn du diese Fähigkeit zu deinem Python-Repertoire hinzufügst, kannst du Daten besser bereinigen, Betrugsfälle erkennen und Systemstörungen identifizieren.
Voraussetzungen
Supervised Learning with scikit-learn1
Univariate Ausreißer erkennen
2
Isolation Forests mit PyOD
3
Abstands- und Dichtebasierte Algorithmen
4
Zeitreihen-Anomalieerkennung und Ausreißer-Ensembles
Anomalieerkennung mit Python
Kurs abgeschlossen
Leistungsnachweis verdienen
Fügen Sie diese Anmeldeinformationen zu Ihrem LinkedIn-Profil, Lebenslauf oder Lebenslauf hinzuTeilen Sie es in den sozialen Medien und in Ihrer Leistungsbeurteilung
Im Lieferumfang enthalten beiPremium or Teams
Jetzt anmeldenMach mit 18 Millionen Lernende und starte Anomalieerkennung mit Python heute!
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.