Direkt zum Inhalt
StartseiteMaschinelles Lernen

Kurse zum maschinellen Lernen

In den Kursen zum maschinellen Lernen werden Algorithmen und Konzepte behandelt, die es Computern ermöglichen, aus Daten zu lernen und Entscheidungen ohne explizite Programmierung zu treffen. Baue deine Fähigkeiten in NLP, Deep Learning, MLOps und mehr aus.
Kurse zum maschinellen Lernen icon

Empfohlen für Machine Learning Anfänger

Baue deine Machine Learning-Fähigkeiten mit interaktiven Kursen auf, die von Experten aus der Praxis kuratiert werden.

Kurs

Machine Learning verstehen

BeginnerSkill Level
2 Stunden
4.9K
Eine Einführung in maschinelles Lernen ohne Programmierung.

Lernpfad

Grundlagen des Machine Learning mit Python

16 Stunden
245
Lerne die Kunst des Machine Learning und werde zum Meister der Vorhersage, der Mustererkennung und der Anfänge des Deep und Reinforcement Learning.

Bist du dir nicht sicher, wo du anfangen sollst?

Jetzt Testen Lassen
69 Ergebnisse

Kurs

Überwachtes Lernen mit scikit-learn

IntermediateSkill Level
4 Stunden
4.4K
Verbessern Sie Ihre Machine-Learning-Fähigkeiten mit scikit-learn in Python. Nutzen Sie reale Datensätze!

Kurs

Unüberwachtes Lernen in Python

IntermediateSkill Level
4 Stunden
2.5K
Lernen Sie, wie Sie mit scikit-learn und scipy unbeschriftete Datensätze clustern, transformieren und visualisieren.

Kurs

MLOps Konzepte

IntermediateSkill Level
2 Stunden
1.1K
Discover how MLOps can take machine learning models from local notebooks to functioning models in production that generate real business value.

Kurs

Machine Learning for Business

BeginnerSkill Level
2 Stunden
1.2K
Understand the fundamentals of Machine Learning and how its applied in the business world.
Mehr Anzeigen

Verwandte Ressourcen auf Maschinelles Lernen

Machine Learning

Blog

25 Projekte zum maschinellen Lernen für alle Niveaus

Projekte zum maschinellen Lernen für Anfänger, Studenten im letzten Studienjahr und Profis. Die Liste besteht aus angeleiteten Projekten, Tutorials und Beispiel-Quellcode.
Abid Ali Awan's photo

Abid Ali Awan

20 Min.


Bist du bereit, deine Fähigkeiten einzusetzen?

Projekte ermöglichen es dir, dein Wissen auf eine breite Palette von Datensätzen anzuwenden, um reale Probleme in deinem Browser zu lösen

Mehr Anzeigen

Häufig gestellte Fragen

Ist maschinelles Lernen einfach zu lernen?

Die DataCamp-Einsteigerkurse für maschinelles Lernen machen viel Spaß und bieten eine hervorragende Grundlage für maschinelles Lernen, um deine Karriere oder dein Unternehmen voranzubringen. Innerhalb weniger Wochen wirst du in der Lage sein, Modelle zu erstellen und Vorhersagen und Erkenntnisse zu gewinnen. Außerdem erlernst du Grundkenntnisse in Python und R sowie die Grundlagen der künstlichen Intelligenz.

Danach wird die Lernkurve ein bisschen steiler. Karrieren im Bereich des maschinellen Lernens erfordern ein tieferes Verständnis von Statistik, Mathematik und Softwaretechnik, die alle auf dem DataCamp erlernt werden können.

Wofür wird maschinelles Lernen eingesetzt?

Kurz gesagt ist maschinelles Lernen eine Art der künstlichen Intelligenz, deren Algorithmen bei der Erfassung von Daten analytische Modelle erstellen und Vorhersagen mit wenig oder gar keinem menschlichen Eingriff treffen.

Es ist schwierig, eine Branche zu finden, in der maschinelles Lernen nicht eingesetzt wird. Marketingfachleute nutzen zum Beispiel maschinelles Lernen, um die Rendite von Marketingkampagnen vorherzusagen. Ebenso nutzen Einkaufsabteilungen maschinelles Lernen, um den benötigten Bestand vorherzusagen.

Unternehmen aller Art nutzen maschinelles Lernen, um Kundenverhalten vorherzusagen, Lieferketten abzubilden und Umsätze zu prognostizieren. Maschinelles Lernen wird eingesetzt, um Gesundheitsergebnisse vorherzusagen und die Patientenzufriedenheit zu verbessern. Maschinelles Lernen hilft Wissenschaftlern, Szenarien für den Klimawandel zu modellieren, einschließlich möglicher Lösungen.

Genauer gesagt wird maschinelles Lernen in intelligenten Geräten, Suchmaschinen und Streaming-Diensten eingesetzt (wenn Netflix dir eine Serie oder einen Film vorschlägt, der auf deinem Fernsehverhalten basiert, ist das maschinelles Lernen).

Welche Jobs kannst du mit Kenntnissen über maschinelles Lernen bekommen?

Fähigkeiten im Bereich des maschinellen Lernens sind in der Programmierung, in der Datenwissenschaft und in anderen Bereichen der Computertechnik wertvoll. Außerdem ist maschinelles Lernen ein Muss für jeden, der in der Robotik arbeiten will!

Nicht alle Berufe, die maschinelles Lernen erfordern, sind jedoch im technischen Bereich angesiedelt. Linguisten nutzen zum Beispiel maschinelles Lernen, um die sich ständig verändernden Sprachen und Dialekte zu verfolgen. Darüber hinaus benötigen Unternehmensabteilungen wie Marketing, Buchhaltung, Logistik und Einkauf, um nur einige zu nennen, zunehmend Experten für maschinelles Lernen, um fundierte Geschäftsentscheidungen treffen zu können. Kenntnisse im Bereich des maschinellen Lernens können dir in fast jeder Position einen Vorsprung verschaffen, denn Modellierung und Vorhersage sind geschäftskritische Anforderungen.

Sind Fähigkeiten im maschinellen Lernen gefragt?

Ja, Fähigkeiten im maschinellen Lernen sind sehr gefragt. Einem Bericht des Weltwirtschaftsforums zufolge wird die Nachfrage nach KI- und ML-Spezialisten zwischen 2023 und 2027 voraussichtlich um 40 % steigen.

Wie viel Mathe brauche ich, um einen Kurs in Maschinellem Lernen zu belegen?

Wenn du ein grundlegendes Verständnis für Konzepte des maschinellen Lernens entwickeln willst, brauchst du nicht viel Mathematik. Wenn du tiefer eintauchen und maschinelles Lernen zu deinem Beruf machen willst (im Gegensatz zu einer Ergänzung zu deiner bestehenden Karriere), ist ein Grundwissen in Statistik und Algebra hilfreich. Wenn du keinen mathematischen Hintergrund hast, ist das okay. Wir bringen dir alles bei, was du brauchst, und unsere Ausbilder sind viel weniger furchteinflößend als dein Mathelehrer in der Schule.

Muss ich Software für maschinelles Lernen herunterladen, um auf dem DataCamp zu lernen?

Du musst nichts herunterladen, um mit DataCamp zu lernen. Alle Tools, die wir verwenden, sind webbasiert.

Weitere Technologien und Themen

Technologien