Python for R Users
This course is for R users who want to get up to speed with Python!
Kurs kostenlos starten5 Stunden15 Videos57 Übungen14.422 LernendeLeistungsnachweis
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.Trainierst du 2 oder mehr?
Versuchen DataCamp for BusinessBeliebt bei Lernenden in Tausenden Unternehmen
Kursbeschreibung
Python and R have seen immense growth in popularity in the "Machine Learning Age". They both are high-level languages that are easy to learn and write. The language you use will depend on your background and field of study and work. R is a language made by and for statisticians, whereas Python is a more general purpose programming language. Regardless of the background, there will be times when a particular algorithm is implemented in one language and not the other, a feature is better documented, or simply, the tutorial you found online uses Python instead of R.
In either case, this would require the R user to work in Python to get his/her work done, or try to understand how something is implemented in Python for it to be translated into R. This course helps you cross the R-Python language barrier.
Trainierst du 2 oder mehr?
Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.- 1
The Basics
KostenlosLearn about some of the most important data types (integers, floats, strings, and booleans) and data structures (lists, dictionaries, numpy arrays, and pandas DataFrames) in Python and how they compare to the ones in R.
- 2
Control flow, Loops, and Functions
This chapter covers control flow statements (if-else if-else), for loops and shows you how to write your own functions in Python!
- 3
Pandas
In this chapter you will learn more about one of the most important Python libraries, Pandas. In addition to DataFrames, pandas provides several data manipulation functions and methods.
- 4
Plotting
You will learn about the rich ecosystem of visualization libraries in Python. This chapter covers matplotlib, the core visualization library in Python along with the pandas and seaborn libraries.
Plotting directly using pandas50 xpUnivariate plots in pandas100 xpBivariate plots in pandas100 xpSeaborn50 xpUnivariate plots in seaborn100 xpBivariate plots in seaborn100 xpFacet plots in seaborn100 xpMatplotlib50 xpUnivariate and bivariate plots in matplotlib100 xpSubfigures in matplotlib100 xpWorking with axes100 xpPolishing up a figure100 xp - 5
Capstone
As a final capstone, you will apply your Python skills on the NYC Flights 2013 dataset.
Trainierst du 2 oder mehr?
Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.Mitwirkende
Voraussetzungen
Introduction to Writing Functions in RDaniel Chen
Mehr anzeigenData Science Consultant at Lander Analytics
Was sagen andere Lernende?
Melden Sie sich an 15 Millionen Lernende und starten Sie Python for R Users Heute!
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.