Pular para o conteúdo principal
InícioSQLCleaning Data in PostgreSQL Databases

Cleaning Data in PostgreSQL Databases

Learn to tame your raw, messy data stored in a PostgreSQL database to extract accurate insights.

Comece O Curso Gratuitamente
4 horas15 vídeos49 exercícios10.445 aprendizesTrophyDeclaração de Realização

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Experimente o DataCamp For Business

Amado por alunos de milhares de empresas


Descrição do Curso

If you surveyed a large number of data scientists and data analysts about which tasks are most common in their workday, cleaning data would likely be in almost all responses. This is the case because real-world data is messy. To help you tame messy data, this course teaches you how to clean data stored in a PostgreSQL database. You’ll learn how to solve common problems such as how to clean messy strings, deal with empty values, compare the similarity between strings, and much more. You’ll get hands-on practice with these tasks using interesting (but messy) datasets made available by New York City's Open Data program. Are you ready to whip that messy data into shape?
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados
Experimente O DataCamp for BusinessPara uma solução sob medida , agende uma demonstração.
  1. 1

    Data Cleaning Basics

    Gratuito

    In this chapter, you’ll gain an understanding of data cleaning approaches when working with PostgreSQL databases and learn the value of cleaning data as early as possible in the pipeline. You’ll also learn basic string editing approaches such as removing unnecessary spaces as well as more involved topics such as pattern matching and string similarity to identify string values in need of cleaning.

    Reproduzir Capítulo Agora
    Introduction to data cleaning
    50 xp
    Developing a data cleaning mindset
    50 xp
    Applying functions for string cleaning
    100 xp
    Pattern matching
    50 xp
    Classifying parking violations by time of day
    100 xp
    Masking identifying information with regular expressions
    100 xp
    Matching similar strings
    50 xp
    Matching inconsistent color names
    100 xp
    Standardizing color names
    100 xp
    Standardizing multiple colors
    100 xp
    Formatting text for colleagues
    100 xp
  2. 3

    Converting Data

    Sometimes you need to convert data stored in a PostgreSQL database from one data type to another. In this chapter, you’ll explore the expressions you need to convert text to numeric types and how to format strings for temporal data.

    Reproduzir Capítulo Agora
  3. 4

    Transforming Data

    In the final chapter, you’ll learn how to transform your data and construct pivot tables. Working with real-world postal data, you’ll discover how to combine and split addresses into city, state, and zip codes using a multitude of powerful functions including CONCAT(), SUBSTRING(), and REGEXP_SPLIT_TO_TABLE().

    Reproduzir Capítulo Agora
Para Empresas

GroupTreinar 2 ou mais pessoas?

Obtenha acesso à biblioteca completa do DataCamp, com relatórios, atribuições, projetos e muito mais centralizados

conjuntos de dados

Parking violations in NYCRestaurant inspections in NYCFilm permits in NYC

colaboradores

Collaborator's avatar
Amy Peterson
Collaborator's avatar
Maggie Matsui
Darryl Reeves Ph.D HeadshotDarryl Reeves Ph.D

Industry Assistant Professor, NYU Tandon School of Engineering

Ver Mais

O que os outros alunos têm a dizer?

Junte-se a mais de 14 milhões de alunos e comece Cleaning Data in PostgreSQL Databases hoje mesmo!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.