Pular para o conteúdo principal
InícioPython

curso

Retrieval Augmented Generation (RAG) with LangChain

Intermediário
Actualizado 01/2025
Learn cutting-edge methods for integrating external data with LLMs using Retrieval Augmented Generation (RAG) with LangChain.
Iniciar curso gratuitamente

Incluído comPremium or Teams

PythonArtificial Intelligence3 horas12 vídeos38 exercícios3,150 XP2,414Certificado de conclusão

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.
Group

Treinar 2 ou mais pessoas?

Tentar DataCamp for Business

Amado por alunos de milhares de empresas

Descrição do curso

Build RAG Systems with LangChain

Retrieval Augmented Generation (RAG) is a technique used to overcome one of the main limitations of large language models (LLMs): their limited knowledge. RAG systems integrate external data from a variety of sources into LLMs. This process of connecting multiple different systems is usually tedious, but LangChain makes this a breeze!

Learn State-of-the-Art Splitting and Retrieval Methods

Level-up your RAG architecture! You'll learn how to load and split code files, including Python and Markdown files to ensure that splits are "aware" of code syntax. You'll split your documents using tokens instead of characters to ensure that your retrieved documents stay within your model's context window. Discover how semantic splitting can help retain context by detecting when the subject in the text shifts and splitting at these points. Finally, learn to evaluate your RAG architecture robustly with LangSmith and Ragas.

Discover the Graph RAG Architecture

Flip your RAG architecture on its head and discover how graph-based, rather than vector-based RAG systems can improve your system's understanding of the entities and relationships in your documents. You'll learn how to convert unstructured text data into graphs using LLMs to do the translation! Then, you'll store these graph documents in a Neo4j graph database and integrate it into a wider RAG system to complete the application.

Pré-requisitos

Developing LLM Applications with LangChain
1

Building RAG Applications with LangChain

Iniciar capítulo
2

Improving the RAG Architecture

Iniciar capítulo
3

Introduction to Graph RAG

Iniciar capítulo
Retrieval Augmented Generation (RAG) with LangChain
Curso
Completo

Obtenha um certificado de conclusão

Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedIn
Compartilhe nas redes sociais e em sua avaliação de desempenho

Incluído comPremium or Teams

Inscreva-se agora

Junte-se a mais 15 milhões de alunos e comece Retrieval Augmented Generation (RAG) with LangChain Hoje!

Crie sua conta gratuita

GoogleLinkedInFacebook

ou

Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.