curso
Retrieval Augmented Generation (RAG) with LangChain
Intermediário
Actualizado 01/2025Iniciar curso gratuitamente
Incluído comPremium or Teams
PythonArtificial Intelligence3 horas12 vídeos38 exercícios3,150 XP2,414Certificado de conclusão
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.Treinar 2 ou mais pessoas?
Tentar DataCamp for BusinessAmado por alunos de milhares de empresas
Descrição do curso
Build RAG Systems with LangChain
Retrieval Augmented Generation (RAG) is a technique used to overcome one of the main limitations of large language models (LLMs): their limited knowledge. RAG systems integrate external data from a variety of sources into LLMs. This process of connecting multiple different systems is usually tedious, but LangChain makes this a breeze!Learn State-of-the-Art Splitting and Retrieval Methods
Level-up your RAG architecture! You'll learn how to load and split code files, including Python and Markdown files to ensure that splits are "aware" of code syntax. You'll split your documents using tokens instead of characters to ensure that your retrieved documents stay within your model's context window. Discover how semantic splitting can help retain context by detecting when the subject in the text shifts and splitting at these points. Finally, learn to evaluate your RAG architecture robustly with LangSmith and Ragas.Discover the Graph RAG Architecture
Flip your RAG architecture on its head and discover how graph-based, rather than vector-based RAG systems can improve your system's understanding of the entities and relationships in your documents. You'll learn how to convert unstructured text data into graphs using LLMs to do the translation! Then, you'll store these graph documents in a Neo4j graph database and integrate it into a wider RAG system to complete the application.Pré-requisitos
Developing LLM Applications with LangChain1
Building RAG Applications with LangChain
2
Improving the RAG Architecture
3
Introduction to Graph RAG
Retrieval Augmented Generation (RAG) with LangChain
Curso Completo
Obtenha um certificado de conclusão
Adicione esta credencial ao seu perfil, currículo ou currículo do LinkedInCompartilhe nas redes sociais e em sua avaliação de desempenho
Incluído comPremium or Teams
Inscreva-se agoraJunte-se a mais 15 milhões de alunos e comece Retrieval Augmented Generation (RAG) with LangChain Hoje!
Crie sua conta gratuita
ou
Ao continuar, você aceita nossos Termos de Uso, nossa Política de Privacidade e que seus dados são armazenados nos EUA.