Chuyển đến nội dung chính
Trang chủPython

Tracks

Professional Data Engineer in Python

Đã cập nhật tháng 08, 2025
Dive deep into advanced skills and state-of-the-art tools revolutionizing data engineering roles today with our Professional Data Engineer track.
Bắt Đầu Theo Dõi Miễn Phí

Bao gồmPhần thưởng or Đội

PythonData Engineering40 giờ9,117

Tạo tài khoản miễn phí của bạn

hoặc

Bằng việc tiếp tục, bạn đồng ý với Điều khoản sử dụng, Chính sách quyền riêng tư của chúng tôi và việc dữ liệu của bạn được lưu trữ tại Hoa Kỳ.
Group

Đào tạo từ 2 người trở lên?

Hãy thử DataCamp for Business

Được người học tại hàng ngàn công ty yêu thích.

Mô tả bài hát

Professional Data Engineer in Python

Take your skills to the next level with our Professional Data Engineer track. This advanced track is designed to build on the Associate Data Engineer in SQL and Data Engineer in Python tracks. It equips you with the cutting-edge knowledge and tools demanded by modern data engineering roles. Throughout this journey, you'll master modern data architectures, enhance your Python skills with a deep dive into object-oriented programming, explore NoSQL databases, and harness the power of dbt for seamless data transformation. Unlock the secrets of DevOps with essential practices, advanced testing techniques, and tools like Docker to streamline your development and deployment processes. Immerse yourself in big data technologies with PySpark and achieve mastery in data processing and automation using shell scripting. Engage in hands-on projects and tackle real-world datasets to apply your knowledge, debug complex workflows, and optimize data processes. By completing this track, you'll not only gain the advanced skills needed to conquer complex data engineering challenges but also the confidence to apply them in the dynamic world of data engineering.

Điều kiện tiên quyết

Data Engineer
  • Course

    1

    Understanding Modern Data Architecture

    Discover modern data architecture's key components, from ingestion and serving to governance and orchestration.

  • Course

    The Unix command line helps users combine existing programs in new ways, automate repetitive tasks, and run programs on clusters and clouds.

  • Course

    This course introduces dbt for data modeling, transformations, testing, and building documentation.

  • Course

    Conquer NoSQL and supercharge data workflows. Learn Snowflake to work with big data, Postgres JSON for handling document data, and Redis for key-value data.

  • Course

    In this Introduction to DevOps, you’ll master the DevOps basics and learn the key concepts, tools, and techniques to improve productivity.

  • Project

    thưởng

    Debugging Code

    Sharpen your debugging skills to enhance sales data accuracy.

  • Course

    10

    Introduction to Docker

    Gain an introduction to Docker and discover its importance in the data professional’s toolkit. Learn about Docker containers, images, and more.

  • Course

    Master PySpark to handle big data with ease—learn to process, query, and optimize massive datasets for powerful analytics!

  • Chapter

    This chapter introduces the exciting world of Big Data, as well as the various concepts and different frameworks for processing Big Data. You will understand why Apache Spark is considered the best framework for BigData.

  • Chapter

    The main abstraction Spark provides is a resilient distributed dataset (RDD), which is the fundamental and backbone data type of this engine. This chapter introduces RDDs and shows how RDDs can be created and executed using RDD Transformations and Actions.

  • Chapter

    In this chapter, you'll learn about Spark SQL which is a Spark module for structured data processing. It provides a programming abstraction called DataFrames and can also act as a distributed SQL query engine. This chapter shows how Spark SQL allows you to use DataFrames in Python.

  • Chapter

    In this chapter, we learn how to download data files from web servers via the command line. In the process, we also learn about documentation manuals, option flags, and multi-file processing.

  • Chapter

    In the last chapter, we bridge the connection between command line and other data science languages and learn how they can work together. Using Python as a case study, we learn to execute Python on the command line, to install dependencies using the package manager pip, and to build an entire model pipeline using the command line.

  • Course

    Learn about the difference between batching and streaming, scaling streaming systems, and real-world applications.

  • Course

    Master Apache Kafka! From core concepts to advanced architecture, learn to create, manage, and troubleshoot Kafka for real-world data streaming challenges!

  • Course

    In this course, you will learn the fundamentals of Kubernetes and deploy and orchestrate containers using Manifests and kubectl instructions.

Professional Data Engineer in Python
13 Courses
Đã
hoàn

Giấy chứng nhận hoàn thành khóa học

Thêm chứng chỉ này vào hồ sơ LinkedIn, sơ yếu lý lịch hoặc CV của bạn.
Hãy chia sẻ điều đó trên mạng xã hội và trong bản đánh giá hiệu suất của bạn.

Bao gồmPhần thưởng or Đội

Đăng Ký Ngay

Hãy tham gia cùng chúng tôi 18 triệu người học và bắt đầu Professional Data Engineer in Python ngay hôm nay!

Tạo tài khoản miễn phí của bạn

hoặc

Bằng việc tiếp tục, bạn đồng ý với Điều khoản sử dụng, Chính sách quyền riêng tư của chúng tôi và việc dữ liệu của bạn được lưu trữ tại Hoa Kỳ.