Data Science for Everyone

An introduction to data science with no coding involved.
Start Course for Free
Clock4 HoursPlay15 VideosCode48 ExercisesGroup52,865 Learners
Database3100 XP

Create Your Free Account

Google LinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.

Loved by learners at thousands of companies


Course Description

What is data science, why is it so popular, and why did the Harvard Business Review hail it as the “sexiest job of the 21st century”? In this non-technical course, you’ll be introduced to everything you were ever too afraid to ask about this fast-growing and exciting field, without needing to write a single line of code. Through hands-on exercises, you’ll learn about the different data scientist roles, foundational topics like A/B testing, time series analysis, and machine learning, and how data scientists extract knowledge and insights from real-world data. So don’t be put off by the buzzwords. Start learning, gain skills in this hugely in-demand field, and discover why data science is for everyone!

  1. 1

    Introduction to Data Science

    Free
    We'll start the course by defining what data science is. We'll cover the data science workflow and how data science is applied to real-world problems. We'll finish the chapter by learning about different roles within the data science field.
    Play Chapter Now
  2. 2

    Data Collection and Storage

    Now that we understand the data science workflow, we'll dive deeper into the first step: data collection and storage. We'll learn about the different data sources you can draw from, what that data looks like, how to store the data once it's collected, and how a data pipeline can automate the process.
    Play Chapter Now
  3. 3

    Preparation, Exploration, and Visualization

    Data preparation is fundamental: data scientists spend 80% of their time cleaning and manipulating data, and only 20% of their time actually analyzing it. This chapter will show you how to diagnose problems in your data, deal with missing values and outliers. You will then learn about visualization, another essential tool to both explore your data and convey your findings.
    Play Chapter Now
  4. 4

    Experimentation and Prediction

    In this final chapter, we'll discuss experimentation and prediction! Beginning with experiments, we'll cover A/B testing, and move on to time series forecasting where we'll learn about predicting future events. Finally, we'll end with machine learning, looking at supervised learning, and clustering.
    Play Chapter Now
In the following tracks
Data Science for EveryoneData Literacy Fundamentals
Hadrien Lacroix Headshot

Hadrien Lacroix

Curriculum Manager at DataCamp
Hadrien has collaborated on 30+ courses ranging from machine learning to database administration through data engineering. He's currently enrolled in a Masters of Analytics at Georgia Tech.

Hadrien started using DataCamp when the platform only had 27 courses. He then joined the Support team and helped students before becoming a Content Developer himself.

Follow Hadrien on LinkedIn
See More
Sara Billen Headshot

Sara Billen

Curriculum Manager at DataCamp
Sara is a graduate of a master's degree in Business Engineering and Marketing Analysis. Prior to working at DataCamp she worked as a Data Science consultant for a Belgian IT company. Sara is passionate about education, data science, and business and loves that she is able to combine all of these disciplines in her job as curriculum manager at DataCamp.
See More
Lis Sulmont Headshot

Lis Sulmont

Curriculum Manager at DataCamp
Lis is a Curriculum Manager at DataCamp. She holds a Master's degree in Computer Science from McGill University with a focus on computer science education research and applied machine learning. Lis is passionate about teaching all things related to data and improving the accessibility of these topics.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA

Join over 6 million learners and start Data Science for Everyone today!

Create Your Free Account

Google LinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.