Introduction to the Tidyverse

Get started on the path to exploring and visualizing your own data with the tidyverse, a powerful and popular collection of data science tools within R.
Start Course for Free
4 Hours16 Videos50 Exercises155,727 Learners
4150 XP

Create Your Free Account

GoogleLinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.

Loved by learners at thousands of companies


Course Description

This is an introduction to the programming language R, focused on a powerful set of tools known as the Tidyverse. You'll learn the intertwined processes of data manipulation and visualization using the tools dplyr and ggplot2. You'll learn to manipulate data by filtering, sorting, and summarizing a real dataset of historical country data in order to answer exploratory questions. You'll then learn to turn this processed data into informative line plots, bar plots, histograms, and more with the ggplot2 package. You’ll get a taste of the value of exploratory data analysis and the power of Tidyverse tools. This is a suitable introduction for those who have no previous experience in R and are interested in performing data analysis.

  1. 1

    Data wrangling

    Free
    In this chapter, you'll learn to do three things with a table: filter for particular observations, arrange the observations in a desired order, and mutate to add or change a column. You'll see how each of these steps allows you to answer questions about your data.
    Play Chapter Now
  2. 2

    Data visualization

    Often a better way to understand and present data as a graph. In this chapter, you'll learn the essential skills of data visualization using the ggplot2 package, and you'll see how the dplyr and ggplot2 packages work closely together to create informative graphs.
    Play Chapter Now
  3. 3

    Grouping and summarizing

    So far you've been answering questions about individual country-year pairs, but you may be interested in aggregations of the data, such as the average life expectancy of all countries within each year. Here you'll learn to use the group by and summarize verbs, which collapse large datasets into manageable summaries.
    Play Chapter Now
  4. 4

    Types of visualizations

    In this chapter, you'll learn how to create line plots, bar plots, histograms, and boxplots. You'll see how each plot requires different methods of data manipulation and preparation, and you’ll understand how each of these plot types plays a different role in data analysis.
    Play Chapter Now
In the following tracks
Data Analyst Data ScientistR ProgrammerTidyverse Fundamentals
Datasets
Gapminder
Collaborators
Yashas RoyChester Ismay
David Robinson Headshot

David Robinson

Chief Data Scientist, DataCamp
Dave uses data science in the fight against cancer on the Data Insights Engineering team at Flatiron Health. He has worked as a data scientist at DataCamp and Stack Overflow, and received his PhD in Quantitative and Computational Biology from Princeton University. Follow him at @drob on Twitter or on his blog, Variance Explained.
See More

What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden
Harvard Business School

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA

Join over 7 million learners and start Introduction to the Tidyverse today!

Create Your Free Account

GoogleLinkedInFacebook
or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.