Direkt zum Inhalt
StartseiteRCase Studies: Network Analysis in R

Case Studies: Network Analysis in R

Apply fundamental concepts in network analysis to large real-world datasets in 4 different case studies.

Kurs Kostenlos Starten
4 Stunden11 Videos47 Übungen
3.657 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
GroupTrainierst du 2 oder mehr?Testen Sie DataCamp For Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Now that you're familiar with the basics of network analysis it's time to see how to apply those concepts to large real-world data sets. You'll work through three different case studies, each building on your previous work. These case studies are working with the kinds of data you'll see in both academic and industry settings. We'll explore some of the computational and visualization challenges you'll face and how to overcome them. Your knowledge of igraph will continue to grow, but we'll also leverage other visualization libraries that will help you bring your visualizations to the web.
Für Unternehmen

GroupTrainierst du 2 oder mehr?

Erhalten Sie für Ihr Team Zugriff auf die vollständige DataCamp-Bibliothek mit zentralisierten Berichten, Zuweisungen, Projekten und mehr
Testen Sie DataCamp for BusinessFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

Netzwerkanalyse mit R

Gehe zu Track
  1. 1

    Exploring graphs through time

    Kostenlos

    In this chapter you'll explore a subset of an Amazon purchase graph. You'll build on what you've already learned, finding important products and discovering what drives purchases. You'll also examine how graphs can change through time by looking at the graph during different time periods.

    Kapitel Jetzt Abspielen
    Exploring your data set
    50 xp
    Finding Dyads and Triads
    100 xp
    Clustering and Reciprocity
    100 xp
    Important Products
    100 xp
    What Makes an Important Product?
    100 xp
    Exploring temporal structure
    50 xp
    Metrics through time
    100 xp
    Plotting Metrics Over Time
    100 xp
  2. 2

    How do people talk about R on Twitter?

    In this lesson you'll explore some Twitter data about R by looking at conversations using '#rstats'. First you'll look at the raw data and think about how you want to build your graph. There's a number of ways to do this, and we'll cover two ways: retweets and mentions. You'll build those graphs and then compare them on a number of metrics.

    Kapitel Jetzt Abspielen
  3. 3

    Bike sharing in Chicago

    In this chapter you will analyze data from a Chicago bike sharing network. We will build on the concepts already covered in the introductory course, and add a few new ones to handle graphs with weighted edges. You will also start with data in a slightly more raw form and cover how to build your graph up from a data source you might find.

    Kapitel Jetzt Abspielen
  4. 4

    Other ways to visualize graph data

    So far everything we've done has been using plotting from igraph. It provides many powerful ways to plot your graph data. However many people prefer interacting with other plotting frameworks like ggplot2, or even interactive frameworks like d3.js. In this lesson you'll look at other plotting libraries that build on the ggplot2 framework. You'll also look at other non-"hairball" type methods like hive plots, as well as building interactive and animated plots.

    Kapitel Jetzt Abspielen
Für Unternehmen

GroupTrainierst du 2 oder mehr?

Erhalten Sie für Ihr Team Zugriff auf die vollständige DataCamp-Bibliothek mit zentralisierten Berichten, Zuweisungen, Projekten und mehr

In den folgenden Tracks

Netzwerkanalyse mit R

Gehe zu Track

Datensätze

Amazon graphAmazon purchase graph over timeTwitter retweet graphTwitter mention graphBike sharing data

Mitwirkende

Collaborator's avatar
Chester Ismay
Collaborator's avatar
Nick Solomon
Collaborator's avatar
Benjamin Feder

Voraussetzungen

Network Analysis in R
Ted Hart HeadshotTed Hart

Senior Data Scientist

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 14 Millionen Lernende und starten Sie Case Studies: Network Analysis in R Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.