Direkt zum Inhalt
StartseiteMachine LearningDeveloping Machine Learning Models for Production

Developing Machine Learning Models for Production

Shift to an MLOps mindset, enabling you to train, document, maintain, and scale your machine learning models to their fullest potential.

Kurs Kostenlos Starten
4 Stunden13 Videos44 Übungen4.660 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
Group

Trainierst du 2 oder mehr?

Versuchen DataCamp for Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Much of today’s machine learning-related content focuses on model training and parameter tuning, but 90% of experimental models never make it to production, mainly because they were not built to last. In this course, you will see how shifting your mindset from a machine learning engineering mindset to an MLOps (Machine Learning Operations) mindset will allow you to train, document, maintain, and scale your models to their fullest potential.

Experiment and Document with Ease

Experimenting with ML models is often enjoyable but can be time-consuming. Here, you will learn how to design reproducible experiments to expedite this process while writing documentation for yourself and your teammates, making future work on the pipeline a breeze.

Build MLOps Models For Production

You will learn best practices for packaging and serializing both models and environments for production to ensure that models will last as long as possible.

Scale Up and Automate your ML Pipelines

By considering model and data complexity and continuous automation, you can ensure that your models will be scaled for production use and can be monitored and deployed in the blink of an eye.

Once you complete this course, you will be able to design and develop machine learning models that are ready for production and continuously improve them over time.

Für Unternehmen

GroupTrainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.
DataCamp Für UnternehmenFür eine maßgeschneiderte Lösung buchen Sie eine Demo.

In den folgenden Tracks

MLOps-Grundlagen

Gehe zu Track
  1. 1

    Moving from Research to Production

    Kostenlos

    This chapter will provide you with the skills and knowledge needed to move your machine learning models from the research and development phase into a production environment. You will learn about the process of moving from a research prototype to a reliable, scalable, and maintainable system.

    Kapitel Jetzt Abspielen
    Adopting an MLOps mindset
    50 xp
    What is a key aspect of MLOps?
    50 xp
    What is technical debt?
    50 xp
    Writing maintainable ML code
    50 xp
    Version control
    50 xp
    Code organization
    50 xp
    Writing effective ML documentation
    50 xp
    Why document labeling methods?
    50 xp
    MLOps best practices
    100 xp
  2. 3

    ML in Production Environments

    In Chapter 3, you’ll examine the various challenges associated with deploying machine learning models into production environments. You’ll learn about the various approaches to deploying ML models in production and strategies for monitoring and maintaining ML models in production.

    Kapitel Jetzt Abspielen
  3. 4

    Testing ML Pipelines

    In the final chapter, you’ll learn about the various ways to test machine learning pipelines and ensure they perform as expected. You’ll discover the importance of testing ML pipelines and learn techniques for testing and validating ML pipelines.

    Kapitel Jetzt Abspielen
Für Unternehmen

GroupTrainierst du 2 oder mehr?

Verschaffen Sie Ihrem Team Zugriff auf die vollständige DataCamp-Plattform, einschließlich aller Funktionen.

In den folgenden Tracks

MLOps-Grundlagen

Gehe zu Track

Mitwirkende

Collaborator's avatar
George Boorman
Collaborator's avatar
Arne Warnke
Collaborator's avatar
Joanne Xiong

Voraussetzungen

MLOps ConceptsSupervised Learning with scikit-learn
Sinan Ozdemir HeadshotSinan Ozdemir

Data Scientist, Entrepreneur, and Author

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 15 Millionen Lernende und starten Sie Developing Machine Learning Models for Production Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.