Inference for Numerical Data in R
In this course you'll learn techniques for performing statistical inference on numerical data.
Kurs Kostenlos Starten4 Stunden15 Videos49 Übungen
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.Trainierst du 2 oder mehr?Testen Sie DataCamp For Business
Beliebt bei Lernenden in Tausenden Unternehmen
Kursbeschreibung
In this course, you'll learn how to use statistical techniques to make inferences and estimations using numerical data. This course uses two approaches to these common tasks. The first makes use of bootstrapping and permutation to create resample based tests and confidence intervals. The second uses theoretical results and the t-distribution to achieve the same result. You'll learn how (and when) to perform a t-test, create a confidence interval, and do an ANOVA!
Für Unternehmen
Trainierst du 2 oder mehr?
Erhalten Sie für Ihr Team Zugriff auf die vollständige DataCamp-Bibliothek mit zentralisierten Berichten, Zuweisungen, Projekten und mehrIn den folgenden Tracks
Statistische Inferenz mit R
Gehe zu Track- 1
Bootstrapping for estimating a parameter
KostenlosIn this chapter you'll use bootstrapping techniques to estimate a single parameter from a numerical distribution.
Welcome to the course!50 xpGenerate bootstrap distribution for median100 xpReview percentile and standard error methods50 xpCalculate bootstrap interval using both methods100 xpWhich method more appropriate: percentile or SE?50 xpDoctor visits during pregnancy50 xpAverage number of doctor's visits100 xpSD of number of doctor's visits100 xpRe-centering a bootstrap distribution50 xpTest for median price of 1 BR apartments in Manhattan100 xpConclude the hypothesis test on median50 xpTest for average weight of babies100 xp - 2
Introducing the t-distribution
In this chapter you'll use Central Limit Theorem based techniques to estimate a single parameter from a numerical distribution. You will do this using the t-distribution.
t-distribution50 xpWhen to t?50 xpProbabilities under the t-distribution100 xpCutoffs under the t-distribution100 xpEstimating a mean with a t-interval50 xpAverage commute time of Americans100 xpAverage number of hours worked100 xpt-interval for paired data50 xpt-interval at various levels100 xpUnderstanding confidence intervals50 xpTesting a mean with a t-test50 xpEstimate the median difference in textbook prices100 xpTest for a difference in median test scores100 xpInterpret the p-value50 xp - 3
Inference for difference in two parameters
In this chapter you'll extend what you have learned so far to use both simulation and CLT based techniques for inference on the difference between two parameters from two independent numerical distributions.
Hypothesis testing for comparing two means50 xpEvaluating the effectiveness of stem cell treatment100 xpEvaluating the effectiveness of stem cell treatment (cont.)100 xpConclusion of the hypothesis test50 xpEvaluating the relationship between smoking during pregnancy and birth weight100 xpBootstrap CI for difference in two means50 xpQuantifying the relationship between smoking during pregnancy and birth weight100 xpMedian lengths of pregnancies for smoking and non-smoking mothers100 xpComparing means with a t-test50 xpHourly pay vs. citizenship status100 xpEstimating the difference of two means using a t-interval100 xp - 4
Comparing many means
In this chapter you will use ANOVA (analysis of variance) to test for a difference in means across many groups.
Vocabulary score vary between vs. (self identified) social class50 xpEDA for vocabulary score vs. social class100 xpComparing many means, visually50 xpANOVA50 xpANOVA for vocabulary score vs. (self identified) social class100 xpConditions for ANOVA50 xpChecking the normality condition50 xpChecking the constant variance condition100 xpPost-hoc testing50 xpCalculate alpha*50 xpCompare pairwise means100 xpCongratulations!50 xp
Für Unternehmen
Trainierst du 2 oder mehr?
Erhalten Sie für Ihr Team Zugriff auf die vollständige DataCamp-Bibliothek mit zentralisierten Berichten, Zuweisungen, Projekten und mehrIn den folgenden Tracks
Statistische Inferenz mit R
Gehe zu TrackDatensätze
Chp1-vid1-boot-dist-noaxes-paranthesesChp1-vid1-bootsamp-bootpop.001Chp1-vid1-manhattan-rentsChp1-vid2-boot-dist-withaxesChp1-vid2-perc-method.001Chp1-vid2-perc-method.002Chp1-vid3-boot-test.001Chp3-vid3-hrly-rate-citizen-smallerChp3-vid3-hrly-rate-citizenChp4-vid1-class-barChp4-vid1-wodrsum-histGss moredaysGSS dataManhattan rent dataRunners.001TdistcomparetonormaldistMitwirkende
Voraussetzungen
Foundations of Inference in RMine Cetinkaya-Rundel
Mehr AnzeigenAssociate Professor at Duke University & Data Scientist and Professional Educator at RStudio
Was sagen andere Lernende?
Melden Sie sich an 14 Millionen Lernende und starten Sie Inference for Numerical Data in R Heute!
Kostenloses Konto erstellen
oder
Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.