Direkt zum Inhalt
StartseitePythonInteractive Data Visualization with Bokeh

Interactive Data Visualization with Bokeh

Learn how to create interactive data visualizations, including building and connecting widgets using Bokeh!

Kurs Kostenlos Starten
4 Stunden15 Videos53 Übungen
3.399 LernendeTrophyLeistungsnachweis

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.
GroupTrainierst du 2 oder mehr?Testen Sie DataCamp For Business

Beliebt bei Lernenden in Tausenden Unternehmen


Kursbeschreibung

Bokeh is a powerful Python package for interactive data visualization, enabling you to go beyond static plots and allow stakeholders to modify your visualizations! In this interactive data visualization with Bokeh course, you'll work with a range of datasets, including stock prices, basketball player statistics, and Australian real-estate sales data. Through hands-on exercises, you’ll build and customize a range of plots, including scatter, bar, line, and grouped bar plots. You'll also get to grips with configuration tools to change how viewers interact with your plot, discover Bokeh's custom themes, learn how to generate subplots, and even how to add widgets to your plots!
Für Unternehmen

GroupTrainierst du 2 oder mehr?

Erhalten Sie für Ihr Team Zugriff auf die vollständige DataCamp-Bibliothek mit zentralisierten Berichten, Zuweisungen, Projekten und mehr
Testen Sie DataCamp for BusinessFür eine maßgeschneiderte Lösung buchen Sie eine Demo.
  1. 1

    Introduction to Bokeh

    Kostenlos

    Learn about the fundamentals of the Bokeh library in this course, which will enable you to level up your Python data visualization skills by building interactive plots. You’ll see how to set up configuration tools, including the HoverTool, providing various opportunities for stakeholders to interact with your plots!

    Kapitel Jetzt Abspielen
    Introduction to Bokeh
    50 xp
    When to use a scatter plot
    50 xp
    Blocks vs. rebounds
    100 xp
    Kevin Durant's performance across seasons
    100 xp
    Shooting ability by position
    100 xp
    Configuration tools
    50 xp
    The best tools for the job
    100 xp
    Setting tools
    100 xp
    Adding LassoSelectTool
    100 xp
    The HoverTool
    50 xp
    Adding a HoverTool
    100 xp
    Formatting the HoverTool
    100 xp
  2. 4

    Introduction to Widgets

    Discover Bokeh's widgets and how they enable users to modify Python visualizations! You’ll learn about Spinners, which allow viewers to change the size of glyphs. We’ll discuss Sliders, which can be used to change axis ranges. Lastly, we’ll introduce the Select widget, which will enable plot updates based on dropdown options.

    Kapitel Jetzt Abspielen
Für Unternehmen

GroupTrainierst du 2 oder mehr?

Erhalten Sie für Ihr Team Zugriff auf die vollständige DataCamp-Bibliothek mit zentralisierten Berichten, Zuweisungen, Projekten und mehr

Datensätze

Bakery SalesStocksNBA Player StatisticsAustralia Property Market

Mitwirkende

Collaborator's avatar
Amy Peterson
Collaborator's avatar
James Chapman
George Boorman HeadshotGeorge Boorman

Curriculum Manager, DataCamp

Mehr Anzeigen

Was sagen andere Lernende?

Melden Sie sich an 14 Millionen Lernende und starten Sie Interactive Data Visualization with Bokeh Heute!

Kostenloses Konto erstellen

GoogleLinkedInFacebook

oder

Durch Klick auf die Schaltfläche akzeptierst du unsere Nutzungsbedingungen, unsere Datenschutzrichtlinie und die Speicherung deiner Daten in den USA.