# Analyzing Survey Data in R

Learn survey design using common design structures followed by visualizing and analyzing survey results.
4 Hours14 Videos49 Exercises6,605 Learners
3950 XP

or
By continuing you accept the Terms of Use and Privacy Policy. You also accept that you are aware that your data will be stored outside of the EU and that you are above the age of 16.

## Course Description

You've taken a survey (or 1000) before, right? Have you ever wondered what goes into designing a survey and how survey responses are turned into actionable insights? Of course you have! In Analyzing Survey Data in R, you will work with surveys from A to Z, starting with common survey design structures, such as clustering and stratification, and will continue through to visualizing and analyzing survey results. You will model survey data from the National Health and Nutrition Examination Survey using R's survey and tidyverse packages. Following the course, you will be able to successfully interpret survey results and finally find the answers to life's burning questions!

1. 1

### Introduction to survey data

Free
Our exploration of survey data will begin with survey weights. In this chapter, we will learn what survey weights are and why they are so important in survey data analysis. Another unique feature of survey data are how they were collected via clustering and stratification. We'll practice specifying and exploring these sampling features for several survey datasets.
2. 2

### Exploring categorical data

Now that we have a handle of survey weights, we will practice incorporating those weights into our analysis of categorical data in this chapter. We'll conduct descriptive inference by calculating summary statistics, building summary tables, and constructing bar graphs. For analytic inference, we will learn to run chi-squared tests.
3. 3

### Exploring quantitative data

Of course not all survey data are categorical and so in this chapter, we will explore analyzing quantitative survey data. We will learn to compute survey-weighted statistics, such as the mean and quantiles. For data visualization, we'll construct bar-graphs, histograms and density plots. We will close out the chapter by conducting analytic inference with survey-weighted t-tests.
4. 4

### Modeling quantitative data

To model survey data also requires careful consideration of how the data were collected. We will start our modeling chapter by learning how to incorporate survey weights into scatter plots through aesthetics such as size, color, and transparency. We'll model the survey data with linear regression and will explore how to incorporate categorical predictors and polynomial terms into our models.
In the following tracks
Statistician
Collaborators
Chester IsmayEunkyung ParkBecca Robins

#### Kelly McConville

Assistant Professor of Statistics at Reed College
Kelly is a survey statistician and an assistant professor of statistics at Reed College where she teaches courses in statistics and data science. She uses R in all of her courses and considers the tidyverse to be a great introduction to data analysis! Whether it be assessing the impact of voter ID laws, quantifying changes in land use, or estimating occupational statistics, Kelly enjoys using data and R to better understand our world!

## What do other learners have to say?

I've used other sites—Coursera, Udacity, things like that—but DataCamp's been the one that I've stuck with.

Devon Edwards Joseph
Lloyds Banking Group

DataCamp is the top resource I recommend for learning data science.

Louis Maiden

DataCamp is by far my favorite website to learn from.

Ronald Bowers
Decision Science Analytics, USAA