Analyzing Financial Statements in Python
Learn to analyze financial statements using Python. Compute ratios, assess financial health, handle missing values, and present your analysis.
Suivez de courtes vidéos animées par des instructeurs experts, puis mettez en pratique ce que vous avez appris avec des exercices interactifs dans votre navigateur.
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Learn to analyze financial statements using Python. Compute ratios, assess financial health, handle missing values, and present your analysis.
Apply statistical modeling in a real-life setting using logistic regression and decision trees to model credit risk.
Utilisez des RNN pour classifier le sentiment, générer des phrases et traduire des textes.
Learn to analyze and visualize network data with the igraph package and create interactive network plots with threejs.
Learn tools and techniques to leverage your own big data to facilitate positive experiences for your users.
Learn business valuation with real-world applications and case studies using discounted cash flows (DCF).
Learn how to manipulate, visualize, and perform statistical tests through a series of HR analytics case studies.
Découvrez Amazon Bedrock pour accéder aux modèles de base et créer des apps IA sans gérer l’infrastructure.
Learn how bonds work and how to price them and assess some of their risks using the numpy and numpy-financial packages.
Work with risk-factor return series, study their empirical properties, and make estimates of value-at-risk.
Learn how to visualize time series in R, then practice with a stock-picking case study.
Améliorez vos compétences KNIME avec notre cours sur la transformation des données, les opérations en colonnes et loptimisation du flux de travail.
Learn how to use Python parallel programming with Dask to upscale your workflows and efficiently handle big data.
From customer lifetime value, predicting churn to segmentation - learn and implement Machine Learning use cases for Marketing in Python.
Leverage tidyr and purrr packages in the tidyverse to generate, explore, and evaluate machine learning models.
Learn about GARCH Models, how to implement them and calibrate them on financial data from stocks to foreign exchange.
Make it easy to visualize, explore, and impute missing data with naniar, a tidyverse friendly approach to missing data.
Dive into our Tableau case study on supply chain analytics. Tackle shipment, inventory management, and dashboard creation to drive business improvements.
Diagnose, visualize and treat missing data with a range of imputation techniques with tips to improve your results.
Réduisez les temps d’entraînement des LLM avec Accelerator et Trainer pour l’entraînement distribué.
Explore latent variables, such as personality, using exploratory and confirmatory factor analyses.
Master core concepts about data manipulation such as filtering, selecting and calculating groupwise statistics using data.table.
Learn to solve increasingly complex problems using simulations to generate and analyze data.
In this course, youll learn how to collect Twitter data and analyze Twitter text, networks, and geographical origin.
Azure Security
Learn to use R to develop models to evaluate and analyze bonds as well as protect them from interest rate changes.
Learn how to pull character strings apart, put them back together and use the stringr package.
Create a healthcare AI agent using Haystack, an open-source framework for orchestrating LLMs and external components.
Learn to use the Bioconductor package limma for differential gene expression analysis.
Prepare for your next statistics interview by reviewing concepts like conditional probabilities, A/B testing, the bias-variance tradeoff, and more.