cours
Cleaning Data in R
Intermédiaire
Actualisé 01/2025RData Preparation4 heures13 vidéos44 exercices3,700 XP53,094Certificat de réussite.
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Formation de 2 personnes ou plus ?
Essayer DataCamp for BusinessApprécié par les apprenants de milliers d’entreprises
Description du cours
Overcome Common Data Problems Like Removing Duplicates in R
It's commonly said that data scientists spend 80% of their time cleaning and manipulating data and only 20% of their time analyzing it. The time spent cleaning is vital since analyzing dirty data can lead you to draw inaccurate conclusions.In this course, you’ll learn a variety of techniques to help you clean dirty data using R. You’ll start by converting data types, applying range constraints, and dealing with full and partial duplicates to avoid double-counting.
Delve into Advanced Data Challenges
Once you’ve practiced working on common data issues, you’ll move on to more advanced challenges such as ensuring consistency in measurements and dealing with missing data. After every new concept, you’ll have the chance to complete a hands-on exercise to cement your knowledge and build your experience.Learn to Use Record Linkage During Data Cleaning
Record Linkage is used to merge datasets together when the values have issues such as typos or different spellings. You’ll explore this useful technique in the final chapter and practice the application by using it to join two restaurant review datasets together into a single dataset.Conditions préalables
Joining Data with dplyr1
Common Data Problems
2
Categorical and Text Data
3
Advanced Data Problems
4
Record Linkage
Cleaning Data in R
Cours terminé
Obtenez un certificat de réussite
Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CVPartagez-le sur les réseaux sociaux et dans votre évaluation de performance
Inclus avecPremium or Teams
S'inscrire maintenantRejoignez plus de 15 millions d’apprenants et commencer Cleaning Data in R dès aujourd'hui !
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.