Análisis de conglomerados en Python
Este curso te presenta el aprendizaje no supervisado con la biblioteca SciPy mediante técnicas como los clústeres jerárquicos y de k-medias.
Siga videos cortos dirigidos por instructores expertos y luego practique lo que ha aprendido con ejercicios interactivos en su navegador.
o
Al continuar, aceptas nuestros Términos de uso, nuestra Política de privacidad y que tus datos se almacenen en los EE. UU.Este curso te presenta el aprendizaje no supervisado con la biblioteca SciPy mediante técnicas como los clústeres jerárquicos y de k-medias.
En este curso, utilizarás T-SQL, la variante de SQL utilizada en SQL Server de Microsoft para el análisis de datos.
Create new features to improve the performance of your Machine Learning models.
En este curso de cuatro horas, aprenderás los fundamentos del análisis de datos de series temporales en Python.
Learn key object-oriented programming concepts, from basic classes and objects to advanced topics like inheritance and polymorphism.
Boost your coding with AI—guide your coding assistant to write, test, and document code effectively.
Aprende a realizar regresiones lineales y logísticas con varias variables explicativas.
Learn the practical uses of A/B testing in Python to run and analyze experiments. Master p-values, sanity checks, and analysis to guide business decisions.
Learn to create your own Python packages to make your code easier to use and share with others.
Master multi-stage builds, Docker networking tools, and Docker Compose for optimal containerized applications!
Find tables, store and manage new tables and views, and write maintainable SQL code to answer business questions.
Dive into the world of machine learning and discover how to design, train, and deploy end-to-end models.
Learn to perform linear and logistic regression with multiple explanatory variables.
Master sampling to get more accurate statistics with less data.
Understand the concept of reducing dimensionality in your data, and master the techniques to do so in Python.
Aprende los fundamentos de las redes neuronales y cómo construir modelos de aprendizaje profundo con TensorFlow.
Aprende a preparar datos para solicitudes de crédito y a aplicar machine learning y reglas para mejorar la seguridad y la rentabilidad.
Aprende a empezar a desarrollar modelos de aprendizaje profundo con Keras.
Learn how to work with Claude using the Anthropic API to solve real-world tasks and build AI-powered applications.
Learn how to build your own SQL reports and dashboards, plus hone your data exploration, cleaning, and validation skills.
Create multi-modal systems using OpenAIs text and audio models, including an end-to-end customer support chatbot!
Learn the basics of model validation, validation techniques, and begin creating validated and high performing models.
Shift to an MLOps mindset, enabling you to train, document, maintain, and scale your machine learning models to their fullest potential.
In this course you will learn how to predict future events using linear regression, generalized additive models, random forests, and xgboost.
Learn to implement custom trading strategies in Python, backtest them, and evaluate their performance!
Learn techniques for automated hyperparameter tuning in Python, including Grid, Random, and Informed Search.
Learn to model and predict stock data values using linear models, decision trees, random forests, and neural networks.
Master the core operations of spaCy and train models for natural language processing. Extract information from unstructured data and match patterns.
In this conceptual course (no coding required), you will learn about the four major NoSQL databases and popular engines.
Aprende a diseñar visualizaciones e informes de Power BI para los usuarios.