Cours
Introduction to Deep Learning in Python
Intermédiaire
Actualisé 04/2025PythonArtificial Intelligence4 heures17 vidéos50 Exercices3,500 XP255,549Certificat de réussite.
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.Formation de 2 personnes ou plus ?
Essayer DataCamp for BusinessApprécié par les apprenants de milliers d’entreprises
Description du cours
Discover Deep Learning Applications
Deep learning is the machine learning technique behind the most exciting capabilities in robotics, natural language processing, image recognition, and artificial intelligence. In this 4-hour course, you’ll gain hands-on practical knowledge of how to apply your Python skills to deep learning with the Keras 2.0 library.Explore Keras Models with a Library Contributor
Taught by ex-Google data scientist and Keras contributor, Dan Becker, this deep learning course explores neural network models and how you can generate predictions with them. The first chapters will grow your understanding of both forward and backward propagation and how they work in practice.Keras library is a Python library that can help you develop and review deep learning models. Like many Python libraries, it's free, open-source and very user friendly. You’ll start by creating a Keras model and will learn how to compile, fit, and classify it before making predictions. Once you’ve completed this course, you’ll have all the tools you need to build deep neural networks and start experimenting with wider and deeper networks over time.
Delve Further into Deep Learning
This course is part of several machine learning and deep learning tracks, offering you clear pathways to build your skills and experience in this area once you’ve completed the introductory course, whether you want to complete a personal project or move towards a career as a Machine Learning Scientist.Conditions préalables
Supervised Learning with scikit-learn1
Basics of deep learning and neural networks
2
Optimizing a neural network with backward propagation
3
Building deep learning models with keras
4
Fine-tuning keras models
Introduction to Deep Learning in Python
Cours terminé
Obtenez un certificat de réussite
Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CVPartagez-le sur les réseaux sociaux et dans votre évaluation de performance
Inclus avecPremium or Teams
S'inscrire maintenantRejoignez plus de 16 millions d’apprenants et commencer Introduction to Deep Learning in Python dès aujourd'hui !
Créez votre compte gratuit
ou
En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.