Accéder au contenu principal
AccueilPython

Biomedical Image Analysis in Python

Learn the fundamentals of exploring, manipulating, and measuring biomedical image data.

Commencer Le Cours Gratuitement
4 heures15 vidéos54 exercices20 245 apprenantsTrophyDéclaration de réalisation

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d'entreprises


Description du cours

The field of biomedical imaging has exploded in recent years - but for the uninitiated, even loading data can be a challenge! In this introductory course, you'll learn the fundamentals of image analysis using NumPy, SciPy, and Matplotlib. You'll navigate through a whole-body CT scan, segment a cardiac MRI time series, and determine whether Alzheimer’s disease changes brain structure. Even if you have never worked with images before, you will finish the course with a solid toolkit for entering this dynamic field.
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.
DataCamp Pour Les EntreprisesPour une solution sur mesure , réservez une démo.

Dans les titres suivants

Traitement des images en Python

Aller à la piste
  1. 1

    Exploration

    Gratuit

    Prepare to conquer the Nth dimension! To begin the course, you'll learn how to load, build and navigate N-dimensional images using a CT image of the human chest. You'll also leverage the useful ImageIO package and hone your NumPy and matplotlib skills.

    Jouez Au Chapitre Maintenant
    Image data
    50 xp
    Load images
    100 xp
    Metadata
    100 xp
    Plot images
    100 xp
    N-dimensional images
    50 xp
    Stack images
    100 xp
    Load volumes
    100 xp
    Field of view
    50 xp
    Advanced plotting
    50 xp
    Generate subplots
    100 xp
    Slice 3D images
    100 xp
    Plot other views
    100 xp
  2. 2

    Masks and Filters

    Cut image processing to the bone by transforming x-ray images. You'll learn how to exploit intensity patterns to select sub-regions of an array, and you'll use convolutional filters to detect interesting features. You'll also use SciPy's ndimage module, which contains a treasure trove of image processing tools.

    Jouez Au Chapitre Maintenant
  3. 3

    Measurement

    In this chapter, you'll get to the heart of image analysis: object measurement. Using a 4D cardiac time series, you'll determine if a patient is likely to have heart disease. Along the way, you'll learn the fundamentals of image segmentation, object labeling, and morphological measurement.

    Jouez Au Chapitre Maintenant
  4. 4

    Image Comparison

    For the final chapter, you'll need to use your brain... and hundreds of others! Drawing data from more than 400 open-access MR images, you'll learn the basics of registration, resampling, and image comparison. Then, you'll use the extracted measurements to evaluate the effect of Alzheimer's Disease on brain structure.

    Jouez Au Chapitre Maintenant
Pour les entreprises

Formation de 2 personnes ou plus ?

Donnez à votre équipe l’accès à la plateforme DataCamp complète, y compris toutes les fonctionnalités.

Dans les titres suivants

Traitement des images en Python

Aller à la piste

ensembles de données

RSNA Hand RadiographOASIS Brain MeasurementsSunnybrook Cardiac MRITCIA Chest CT (Sample)

collaborateurs

Collaborator's avatar
Lore Dirick
Collaborator's avatar
Becca Robins
Collaborator's avatar
Sara Snell
Stephen Bailey HeadshotStephen Bailey

Lead Data Scientist

Voir Plus

Qu’est-ce que les autres apprenants ont à dire ?

Inscrivez-vous 15 millions d’apprenants et commencer Biomedical Image Analysis in Python Aujourd’hui!

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.