Accéder au contenu principal
AccueilPython

cours

Introduction to TensorFlow in Python

Intermédiaire
Actualisé 01/2025
Learn the fundamentals of neural networks and how to build deep learning models using TensorFlow.
Commencer le cours gratuitement

Inclus avecPremium or Teams

PythonMachine Learning4 heures15 vidéos51 exercices4,300 XP51,379Certificat de réussite.

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.
Group

Formation de 2 personnes ou plus ?

Essayer DataCamp for Business

Apprécié par les apprenants de milliers d’entreprises

Description du cours

Get an Introduction to TensorFlow

Not long ago, cutting-edge computer vision algorithms couldn’t differentiate between images of cats and dogs. Today, a skilled data scientist equipped with nothing more than a laptop can classify tens of thousands of objects with greater accuracy than the human eye.

In this course, you will use TensorFlow 2.6 to develop, train, and make predictions with the models that have powered major advances in recommendation systems, image classification, and FinTech.

Use Linear Models to Make Predictions

You’ll discover how to use TensorFlow 2.6 to make predictions using linear regression models, and will test out your knowledge by predicting house prices in King County. This section of the course includes a view of loss functions and how you can reduce your resource use by training your linear model in batches.

Train Your Neural Network

In the second half of the course, you’ll use the same tools to make predictions using neural networks. You’ll practice training a network in TensorFlow by adding trainable variables and using your model and test features to predict target values.

Combine TensorFlow with the Keras API

Add Keras’ powerful API to your repertoire and learn to combine it with TensorFlow 2.6 to make predictions and evaluate models. By the end of this course, you’ll understand how to use the Estimators API to streamline model definition and to avoid errors.

Conditions préalables

Supervised Learning with scikit-learn
1

Introduction to TensorFlow

Commencer le chapitre
2

Linear models

Commencer le chapitre
3

Neural Networks

Commencer le chapitre
4

High Level APIs

Commencer le chapitre
Introduction to TensorFlow in Python
Cours
terminé

Obtenez un certificat de réussite

Ajoutez ces informations d’identification à votre profil LinkedIn, à votre CV ou à votre CV
Partagez-le sur les réseaux sociaux et dans votre évaluation de performance

Inclus avecPremium or Teams

S'inscrire maintenant

Rejoignez plus de 15 millions d’apprenants et commencer Introduction to TensorFlow in Python dès aujourd'hui !

Créez votre compte gratuit

GoogleLinkedInFacebook

ou

En continuant, vous acceptez nos Conditions d'utilisation, notre Politique de confidentialité et le fait que vos données sont stockées aux États-Unis.